Fast Color Quantization via Fuzzy Clustering
نویسندگان
چکیده
منابع مشابه
Hard versus fuzzy c-means clustering for color quantization
Color quantization is an important operation with many applications in graphics and image processing. Most quantization methods are essentially based on data clustering algorithms. Recent studies have demonstrated the effectiveness of hard c-means (k-means) clustering algorithm in this domain. Other studies reported similar findings pertaining to the fuzzy c-means algorithm. Interestingly, none...
متن کاملA Comparative Study of K-means and Fuzzy C-means for Color Reduction
Color quantization (reduction) is an important operation with many applications in graphics and image processing. Most quantization methods are essentially based on data clustering algorithms. Recent studies have demonstrated the effectiveness of hard c-means (k-means) clustering algorithm in this domain. Other studies reported similar findings pertaining to the fuzzy c-means algorithm. Interes...
متن کاملFuzzy ART for Relatively Fast Unsupervised Image Color Quantization
The use of Fuzzy Adaptive Resonance Theory (FA) is explored for the unsupervised color quantization of a color image. The red, green and blue color component values of a given color image are passed as input instances into FA which then groups similar colors into the same class. The average of all of the colors in a given class then replaces the pixel values whose original colors belonged to th...
متن کاملA fast fuzzy c-means algorithm for color image segmentation
Color image segmentation is a fundamental task in many computer vision problems. A common approach is to use fuzzy iterative clustering algorithms that provide a partition of the pixels into a given number of clusters. However, most of these algorithms present several drawbacks: they are time consuming, and sensitive to initialization and noise. In this paper, we propose a new fuzzy c-means alg...
متن کاملFuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition
In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...
متن کامل